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Abstract

A multigrid part-in-cell algorithm for a shearless slab drift wave model with kinetic electrons is

presented. The algorithm, which is based on an exact separation of adiabatic and nonadiabatic

electron responses, is used to investigate the presence of strange attractors in drift wave turbulence.

Although the simulation model has a large number of degrees of freedom, it is found that the strange

attractor is low-dimensional and that it is strongly affected by dissipative (collisional) effects.
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I. INTRODUCTION

There are growing experimental, numerical and theoretical evidences that the anomalous

transport observed in tokamaks [1] and stellarators [2] is caused by slow, drift-type modes

(such as trapped electron modes and ion-temperature gradient-driven modes). Although

typical collision frequencies in hot, magnetized fusion plasmas can be quiet low in absolute

values, collisional effects are nevertheless important since they act as dissipative sinks.

As it is well known, dissipative systems with many (strictly speaking more than two)

degrees of freedom are often chaotic and may evolve towards a so-called attractor. Each at-

tractor can be conveniently characterized, in particular, through its Hausdorff dimension [3];

some attractors have noninteger (fractal) dimensions and, following the terminology of Ru-

elle and Takens [4], are called strange attractors. In a pioneer paper, Lorenz [5] has first

suggested the importance of strange attractors to the onset of turbulence in fluid flows.

In this paper, we study the possible existence of strange attractors in a shearless slab

particle-in-cell (PIC) model of electrostatic drift waves; collisional effects are important in

this model as they provide the key ingredient of dissipation in a system with a large number

of degrees of freedom. The computation of the attractor dimension using conventional box-

counting algorithms are very difficult when the number of degrees of freedom (≡ Nf) is

larger than two [6]. In this paper, we use the method of Grassberger and Procaccia [7] to

determine a lower bound, known as the correlation exponent, to the attractor dimension.

It is shown that a low-dimensional attractor does exist for our specific model and that its

dimension is sensitive to the electron-ion collision frequency.

The paper is organized as follows; in section 2, we present a model for electrostatic

drift waves in shearless slab geometry. The accurate modeling of the electron dynamics is

based on an exact separation between adiabatic and nonadiabatic responses. In section 3,

the characterization of strange attractors based on various measures are discussed and the

Grassberger-Procaccia algorithm for the computation of the correlation exponent is given.

In section 4, an application of the Grassberger-Procaccia to the problem of fully-developed

drift wave turbulence is presented and an estimate for the attractor dimension is given. We

conclude with some remarks in section 5.

2



II. DRIFT WAVE TURBULENCE MODEL

In order to stress the relevance of strange attractors to drift-wave turbulence, we consider

a shearless slab model for electrostatic drift waves. We start from the collisionless, electro-

static, gyrokinetic Vlasov equation, in the long-wavelength limit, for particles species j with

mass mj and charge qj

dFj

dt
≡ ∂Fj

∂t
+

(
v||b̂0 + VE

)
·∇Fj − qj

mj

b̂0·∇Φ
∂Fj

∂v||
= C (Fj) (1)

where b̂0 = B0/B0 is a unit vector, VE = cb̂0×∇Φ/B0 is the E×B drift velocity, and

C (Fj) is the collision operator. The confining magnetic field is taken to be of the form B0 =

B0 (ẑ + θŷ) where θ is a small parameter, together with the simplification of ∂/∂z 7→ kz ≡ 0.

Collisional effects on the ion distribution are neglected, C(Fi) = 0; the effects of electron-ion

collisions can be represented by the number-conserving, energy-conserving Lorentz collision

operator [8] including only pitch-angle scattering in the velocity space for the electrons

C (Fe) =
νei

2

1

sin ζ

∂

∂ζ

(
sin ζ

∂Fe

∂ζ

)
, (2)

where νei = 4πn0e
4 lnΛ/m2

eV
3
the is the collision frequency and ζ = cos−1v||/

(
v2
|| + v2

⊥
)1/2

.

Although the standard δf scheme [9] works well for the ion dynamics, an accuracy problem

arises when the scheme is used to treat the electron dynamics (see section 4 and Fig. 1).

The origin of this accuracy problem is related to the fact that the bulk of the electrons do

not interact with the low-frequency waves but may (and usually do) transfer noise if their

dynamics is not treated accurately. Therefore, it is natural to separate the electrons into two

groups (adiabatic and nonadiabatic) to reflect their different responses to the low-frequency

waves. To do so, we write the distribution Fj as

Fj = exp

(
−qjΦ

Tj

)
FMj + hj , (3)

where FMj is the Maxwellian distribution for particle species j and hj is the nonadi-

abatic response. Substituting representation (3) in Eq.(1) and using the relations of(
∂/∂t + v||b̂0·∇

)
FMj = 0 and VE·∇Φ ≡ 0, we obtain an evolution equation for the nona-

diabatic response

dhj

dt
= C (Fj) + FMj exp

(
−qjΦ

Tj

) (
κj·VE +

qj

Tj

∂Φ

∂t

)
, (4)
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where κj = κ
[
1 − ηj

2

(
1 − v||2

)]
, v|| = v||/Vthj and κ = −∇n0/n0. As usual collisional

effects are treated perturbatively, and the equation for the marker weight associated with

the nonadiabatic part of the distribution function, Wj ≡ hj/Fj, is given by (in gyrokinetic

units (ωcit 7→ t; v||/cs 7→ v||; ρsκ 7→ κ; ρs∇ 7→ ∇; eΦ/Te 7→ Φ)

dWj

dt
= (1 − Wj)

[(
b̂0×∇Φ

)
·κj + θjϕ

]
, (5)

where θj ≡ ZjTe/Tj and ϕ ≡ ∂Φ/∂t. By construction [Eq.(3)], the contribution due to free

streaming has been removed from dWj/dt. As it is evident from Eq.(5), the representation (3)

implies the computation of an additional scalar field, ϕ. In order to determine ϕ, we proceed

as follows. Taking the time derivative of the gyrokinetic Poisson (in the long-wavelength

limit)

e2

Te
n0ρ

2
s∇2

⊥Φ = −ρ ≡ e

∫ +∞

−∞
(Fe − Fi) dv|| , (6)

we obtain e2Te
−1n0ρ

2
s∇2

⊥ϕ = −∂ρ/∂t. In turn, the quantity ∂ρ/∂t can be obtained by taking

the time derivative of the zeroth-order velocity moment of the Vlasov equation, Eq.(1), with

the result of

∂ρ

∂t
= −VE·∇ρ −∇||J|| ,

where J|| is the parallel current density. In gyrokinetic units the elliptic equation governing

ϕ is then given by

∇2
⊥ϕ = VE·∇ρ + ∇||J|| , (7)

whereas the gyrokinetic Poisson equation becomes

∇2
⊥Φ −

(
1 +

1

τ

)
Φ =

∫ +∞

−∞
(he − hi) dv|| + Q (Φ) , (8)

where Q (Φ) ≡ exp (Φ) − exp (−Φ/τ ) − (1 + 1/τ ) Φ, τ = Ti/Te and representation (3) has

been used. In summary, the model equations describing electrostatic drift wave turbulence

are Eq.(5) for the nonadiabatic weight, the elliptic equations (8,7) for Φ and ϕ = ∂Φ/∂t,

respectively, and the equations of motion (in gyrokinetic units)

dr

dt
= v||b̂0 + b̂0×∇Φ , (9)
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dv||
dt

= −Zj
mi

mj
∇||Φ . (10)

The system of equations (5,7-10) is referred to as the splitting scheme. For the fully nonlinear

simulations, the nonlinear Poisson equation, Eq.(8), is solved using a multigrid solver that

will described in detail in a separate paper. In the collisionless case, the linear dispersion

relation is obtained by substituting the velocity moment of the linearized form of Eq.(4)

[assuming perturbations of the form of exp (ik·r − iωt)]

hj =
[
ω?gj(v||) + θjω

] FMj

ω − k||v||
Φ ,

where ω? = (kyρs) cs/Ln is the drift frequency, in Poisson’s equation (6) with the result of(
1 +

1

τ
+ b

)
ω = −ω

[
ζeZ (ζe) +

1

τ
ζiZ (ζi)

]
+ ω? [ζeR (ζe) − ζiR (ζi)] , (11)

where R (ζj) ≡ (1 − ηj/2) Z (ζj) + ηjζj [1 + ζjZ (ζj)] /2, ζj ≡ ω/
(√

2k||Vthj

)
, b = ky

2ρs
2 and

Z(ζ) is the plasma dispersion function of Fried and Conte [10] with argument ζ.

III. CHARACTERIZATION OF STRANGE ATTRACTORS

It is already an accepted notion that many nonlinear dissipative dynamical systems do

not approach stationary or periodic states asymptotically. Instead, with appropriate values

of their parameters, they tend towards strange attractors on which the motion is chaotic,

i.e. not periodic and unpredictable over long times, being extremely sensitive on the initial

conditions [4, 5, 11].

Typically a strange attractor arises when the flow in phase space does not contract a

volume element in all directions, but stretches it in some. In order to remain confined to a

bounded domain, the volume element gets folded at the same time, so that it has after some

time a multisheeted structure [4, 5]. In our model, dissipation through collisions is what

allows for phase space contraction.

Ever since the notion of strange attractors has been introduced, it has been clear that the

Lyapunov exponents [15, 17] might be employed in characterizing them; however, while the

Lyapunov exponents describe the stretching needed to generate a strange attractor, they do

not provide much information about the folding.

Another measure of the local structure of fractal attractors is the fractal dimension (or

Hausdorff dimension) [18–21]. In order to determine the Hausdorff dimension of an attractor,
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one covers the attractor by Nf -dimensional hypercubes (assuming that the system has Nf

degrees of freedom) of side length ` and considers the limits ` 7→ 0. The minimal number

of cubes needed for the covering scales like ∼ `−D, where D is the Hausdorff dimension of

the attractor. The Hausdorff dimension, D, is independent of the frequency with which

a typical trajectory visits the various parts of the attractor, since it is a purely geometric

measure. It has been shown by various authors [6, 20] that the calculation of D is exceedingly

hard and in fact impractical for higher dimensional systems. In typical PIC simulations, the

system is characterized by thousands, if not millions, degrees of freedom and all box-counting

algorithms to determine the Hausdorff dimension are computationally intractable.

Finally, the information entropy can also be used to characterize an attractor. Information

entropy is the information gained by an observer who measures the actual state X(t) of the

system with accuracy ` and who knows all properties of the system but not the initial

conditions X(0). The information entropy takes the form of S ∼ S0 − σ ln `, where σ is

known as the information dimension [17].

Grasseberger and Procaccia [7] have introduced another measure of an attractor known

as the correlation exponent, which is based on correlations between random points on the

attractor. The basic idea behind the correlation exponent measure is that trajectories be-

longing to an attractor, although not dynamically correlated, are spatially correlated. In-

troducing the correlation integral C(`) these authors have shown that, for small enough `,

C(`) ∼ `α, where α is the so-called correlation exponent. Grassberger and Procaccia have

proved that the information dimension, σ, the Hausdorff dimension, D, and the correlation

exponent, α, satisfy the inequality

α ≤ σ ≤ D . (12)

In most cases, the inequality (12) is rather tight. To measure the spatial correlation of the at-

tractor, Grassberger and Proccacia consider a time series {Xi ≡ X (t + i∆t) ; i = 1, · · · , M}
of points on the attractor, where ∆t is the (fixed) time step; they define the correlation

integral [7] as

C (`) ≡ lim
M 7→∞

M̂ (`)

M2
, (13)

where

M̂ (`) ≡
∑
ij

H (|Xi − Xj | − `) , (14)
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is the number of pairs (i, j) whose distance dij = |Xi − Xj| is less than `; in Eq.(14) H(x),

denotes the Heaviside function. One important conclusion of the work by Grassberger and

Proccacia is that, for small `, the correlation integral C(`) grows like a power

C (`) ∼ lα ,

and that this correlation exponent (α) can be taken as a measure of the local structure of

a strange attractor [7]. The usefulness of this measure for a system with many degrees of

freedom is highlighted in the next section.

IV. NUMERICAL EXPERIMENTS

Before discussing the fully turbulent state, we present some linear simulation results.

Figure 1 shows the linear growth rate as a function of the drive (κ = ρs/Ln) for the standard

δf scheme [9] (triangles) and the splitting scheme developed in this paper (squares) for the

same physical parameters and initial conditions. The parameters are: Ni = 6765 (number

of ion markers), Ne = 6765, on a 64-grid system of length L = 8; mode number n = 1

(k⊥ρs = 0.78); the time step is ∆t = 1; the magnetic field tilt is θ = 0.01, and the electron

and ion temperature-gradient parameters are ηe = ηi = 0; the electron-ion collision frequency

is zero. The plain line in Figure 1 represents the numerical solution (based on Muller’s

algorithm [12] in the complex ωr − γ plane) of the exact linear dispersion relation (11). It

is interesting to note that the splitting scheme captures the linear physics almost exactly,

whereas the δf scheme is not as accurate, even when the drive κ is strong.

The collision operator (2) has been implemented numerically as follows; each electron

marker experiences a pitch-angle scattering of magnitude ∆ζk =
√−2νei∆t ln (1 − ξk) for

k = 1, · · · , Ne; here ξ is a random number in the unit interval. The velocities after the

collision
(
Ṽ||k, Ṽ⊥k

)
are given by [14]

Ṽ||k = V||k

√
1 − (∆ζk)

2 − V⊥k∆ζk sin
(
2πξ′j

)
Ṽ⊥k =

√
V 2
||k + V 2

⊥k − Ṽ 2
||k

and ξ′ is a random number such that ξ′ ∈ [0, 1] and mean 〈ξ′〉 = 1
2

.

Figure 2 shows the linear growth rate, normalized to its value in the collisionless case (γ0),

for the same parameters as in Figure 1 and κ = 0.1. For reference, γ0/ωci = 2.97 × 10−3
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in this case. As expected, the mode is further destabilized in the presence of collisions,

since the nonadiabatic electron response increases. Using a Bhatnagar-Gross-Krook (BGK)

collision operator [13] of the form CBGK(Fe) = −νei (Fe − FMe), it is easy to show that the

linear growth rate scales linearly with the collision frequency for νei . γ0. As expected the

mode frequency is weakly affected by collisions, as it can be seen in Figure 3; the mode

frequency of reference (νei = 0) is ωr0/ωci = 5.02 × 10−2.

Before applying the correlation measurement algorithm to the problem of drift wave

turbulence, it is convenient to test the implementation of the correlation exponent algorithm

using well-known results such as the logistic map [11] and the Henon map [22]. We first

consider a one-dimensional non-invertible map: the logistic map [11]

Xn+1 = aXn (1 − Xn) , (15)

where a is a parameter. Figure 4 shows the correlation integral at the point of onset via

period doubling bifurcations, i.e. when a = a∞ = 3.5699456... [16]. The initial position is

X0 = 0.5 and Np = 5000 iterations were carried out. The measured correlation exponent

(based on a χ2 fit; plain line) is α = 0.51; Grassberger [21] has shown that the Hausdorff

dimension for the logistic map is D = 0.538; therefore, the correlation exponent does provide

a lower bound to the Hausdorff dimension.

The second test is based on the two-dimensional invertible map: the Henon map [22]

Xn+1 = Yn − aX2
n + 1 ,

Yn+1 = bXn , (16)

with parameters a = 1.4 and b = 0.3. Figure 5 shows the Henon map obtained after 5000

iterations with starting point (X0, Y0) = (0.5, 0.0); the associated correlation integral is

shown in Figure 6. The measured correlation exponent is α = 1.24 which again provides a

close lower bound to the known Hausdorff dimension [19] of D = 1.26.

Having tested the implementation of the Grassberger-Proccacia algorithm, we consider

the case of fully developed electrostatic drift wave turbulence. Since there is no explicit

source of dissipation (no phase space contraction) for the ion population, we measure the

correlation exponent of the electron dynamics only. We randomly select a set of M electron

markers from the electron distribution function. Each sample Xq =
(
x

(n)
k , v

(n)
||k

)
is recorded

for each marker k at time step n. In order to prevent spurious spatial correlations, the
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system must be in the fully nonlinear state; in this paper, the positions in phase space Xq

were recorded for ωcit ≥ 3000 (fully turbulent regime) for Ns time steps. The distance in

phase space between Xq and Xq′ is simply given by

dq,q′ = |Xq − Xq′| =

{[
x

(n)
k − x

(n′)
k′

]2

+
[
v

(n)
||k − v

(n′)
||k′

]2
}1/2

, (17)

and the correlation integral is computed as in Eq.(13). In a typical simulation, both the num-

ber of sampling markers M and the number of time steps Ns is varied to ensure convergence.

Although convergence is usually observed for MNs . 104, the correlation integral calcula-

tions presented in this paper were based on MNs = 5 × 105. Note that the computational

work scales like N2
s M2. Figure 7 shows the electron correlation integral, Ce(`), as a function

of `/`0, where `0 is arbitrary; the collision frequency is νei = 10−4. For very small distances,

the data for Ce(`) deviate from a power law, but that was to be expected: the values of Xq

and Xq′ are strongly correlated. For larger ` the correlation integral follows a power law

over 7 orders of magnitude. The χ2 fit yields a correlation exponent of α = 0.00126. This

means that the low-dimensional attractor is somewhere between a point (D = 0) and a line

(D = 1). Since the system has many degrees of freedom, such a low-dimensional may seem

surprising; however, for a very different physical system, Nicolis and Nicolis [23] have found

a strange attractor with a small dimension D in a system with many degrees of freedom (see

next section) The key factor here is the rate of phase space contraction.

To pursue this argument, we have measured the dependence of the correlation exponent

α on the collision frequency; the result is depicted in Figure 8. The general trend is a

decrease in the correlation exponent, and therefore a decrease in the Hausdorff dimension,

with increasing collision frequency. This is not surprising as the phase space contraction

rate is related to, but not necessarily directly proportional to, the collision frequency. In

order to assess the impact of multiple random collisions on the correlation exponent, let us

consider a modified Henon map of the form

Xn+1 = Yn − aX2
n + 1 ,

Yn+1 = (1 + εξ) bXn , (18)

where a and b are positive parameters, ε � 1 and ξ is a random number in the interval

[0, 1]. The factor εξ in this somewhat artificial model simulates the random ”collisions”. A
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simple calculation shows that the Jacobian of the map (18) is given by

J =

∣∣∣∣∣∣
∂Xn+1

∂Xn

∂Xn+1

∂Yn

∂Yn+1

∂Xn

∂Yn+1

∂Yn

∣∣∣∣∣∣ = − (1 + εξ) b . (19)

Note that the Jacobian averaged over many pseudo-collisions is 〈J 〉 = − (
1 + 1

2
ε
)
b; there-

fore, the phase space contracts faster as the ”collision frequency”, ε, increases. As a result,

we expect the fractal dimension of the attractor to decrease with increasing ”collision fre-

quency”. Of course, the Jacobian of the actual system (turbulent plasma with many degrees

of freedom) cannot be calculated explicitly. Finally, we note the presence of a narrow region

where ∂α/∂νei > 0 in Figure 8; this result is not due to statistical errors (this part of the

curve has been reproduced using a much larger statistical ensemble) and further work is

required to explain this phenomenon.

V. CONCLUSIONS

We have identified the existence of a low-dimensional strange attractor in particle-in-

cell, electrostatic drift-wave turbulence. The dimension of the attractor has been estimated

based on the measurement of the correlation exponent [7] (a lower bound to the usual

Hausdorff dimension). It has been shown that the dimension of the attractor is sensitive to

the electron-ion collision frequency since this quantity is related to the contraction rate in

phase.

Numerical results have shown the presence of a low-dimensional attractor in a system with

many degrees of freedom. In a different context, Nicolis and Nicolis [23] have studied the

attractor associated with the climatic evolution over the past million years based on isotope

records of deep-sea cores. The surprising result of Nicolis and Nicolis’s work is that, although

the climate has very many degrees of freedom, a well-defined low-dimensional attractor was

identified based on the experimental time series. Their results and our results suggest that

some physical systems with many degrees of freedom can possess low-dimensional attrac-

tors, implying the presence of deterministic dynamics with few key variables but displaying

impredictable behavior (because of the fractal dimensionality of the attractor).

As a final remark, we note that, since the Grassberger-Procaccia algorithm is based on the

information contained in one (or many) time series, their method can be useful to analyze

and characterize strange attractors from experimental measurements in fusion plasmas.
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Figure 1 Linear growth rate for the standard δf scheme (triangles) and for the splitting

scheme (squares) as a function of κ = ρs/Ln. The plain line is the numerical solution

of the linear dispersion relation. The parameters are: Ne = Ni = 6765, on a grid of

length L = 8 with 64 grid points; ηe = ηi = 0 and θ = 0.01. Only the N = 1 mode

(k⊥ρs ' 0.78) is retained in the simulation and the collision frequency is zero. The

initial configuration in phase space for the splitting scheme run and the δf run are

identical.

Figure 2 Linear growth rate for the fastest growing mode (k⊥ρs = 0.78) as a function of

the electron-ion collision frequency; the parameters for the (linear) simulations are:

Ni = Ne = 6765 makers, 64-grid of length L = 8 and time step ∆t = 1.0. Here

γ0/ωci = 2.97 × 10−3 is the linear growth rate for the collisionless case νei = 0.

Figure 3 Mode frequency for the fastest growing mode (k⊥ρs = 0.78) as a function of

the electron-ion collision frequency for the same parameters as in Figure 2. Here

ωr0/ωci = 5.02 × 10−2 is the mode frequency for the collisionless case νei = 0.

Figure 4 Correlation integral for the logistic map for a set of N = 5000 points. The

parameter a is a = a∞ = 3.5699456... (period-doubling). The starting point is X0 =

0.5.

Figure 5 Henon map, with parameters a = 1.4 and b = 0.3 for a set of 5000 points. The

starting point is X0 = 0.5 and Y0 = 0.0.

Figure 6 Correlation integral for the Henon map for a set of N = 5000 points. The

parameters of the map are a = 1.4 and b = 0.3, with starting point (X0, Y0) = (0.5, 0.0).

Figure 7 Correlation integral based on MNs = 5× 105 samples for electrostatic drift wave

turbulence with electron-ion collision frequency νei = 10−4; the correlation exponent

computed from the χ2 square fit (plain line) is α = 0.00126.

Figure 8 Correlation exponent based on 5 × 105 samples as a function of the electron-ion

collision frequency.
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FIG.1 Lewandowski
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FIG.2 Lewandowski
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FIG.3 Lewandowski
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FIG.4 Lewandowski
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FIG.5 Lewandowski
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FIG.6 Lewandowski
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FIG.7 Lewandowski
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FIG.8 Lewandowski
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